

Department of Mathematics

Teaching Plan

Academic Year – 2023-24

NAME- DR. RAKESH TIWARI PAPER- I

CLASS – B.SC. III YEAR TITLE - ANALYSIS

I AI EK- I					
Month	Unit/	Topic of lectures	No. of	Method/Mod	
	Title		lecture	e of	
				Deliverv	
August	Ι	Construction of real numbers as the completion of the incomplete	17	1. Flip the class	
		metric space of rationals. Real numbers as a complete ordered		Γ	
		field Definition and examples of matric spaces		2. Group	
		neid. Deminion and examples of metric spaces.		discussion	
September	Ι	Neighborhoods. Limit points. Interior points. Open and closed	13	0 D 11	
		sets. Closure and interior. Boundary points. Sub-Space of a metric		3. Problem	
		space. Cauchy sequences. Completeness. Cantor's intersection		Solving	
		theorem. Contraction principle.		4 Virtual Classes	
	п		10	4. V II tuai Ciusses	
October	Ш	Dense subsets. Baire Category theorem. Separable space, second	12		
		theorem Uniform continuity Isometric and homeomorphism Equivalent			
		metrices Compactness			
November	Π	Sequential compactness. Totally bounded spaces. Finite intersection	11		
November	п	property Continuous functions and compact sate Connectedness	11		
		Compared Continuous functions and compare sets. Connectedness.			
		Components. Continuous functions and connected sets	10		
December	ш	Complex numbers as ordered pair. Geometric representation of Complex	12		
		numbers. Stereographic projection. Continuity and differentiability of			
		complex functions. Analytic functions. Cauchy- Riemann equations.			
		functions Mobius transformations Fixed point Cross ratio Inverse			
		points and critical mappings. Conformal mappings.			
T	11/		11		
January	1V	Riemann integral. Integrability of continuous and monotonic functions.	11		
		The fundamental Theorem f integral calculus. Mean value theorems			
		of integral calculus. Improper integrals and their convergence,			
		comparison tests. Abel's and Dirichlet's tests. Frullani's integral.			
		Integral as a function of a parameter. Continuity, derivability and			
		integrability of an integral of a function of aparameter			
February	V	Series of arbitrary terms. Convergence, divergence and oscillation	12		
1 cordury		Abel's and Dirichlet's test Multiplication of series Double series	14		
		Partial derivation and differentiability of real valued functions of two			
		Faillar derivation and differentiability of fear valued functions of two			
		variautes.			
March	V	Schwarz and Youngs theorem. Implicit function theorem. Fourier	11		
		series. Fourier expansion of piece wise monotonic function.			
		* *			

Department of Mathematics

Teaching Plan

Academic Year – 2023-24

CLASS – M.Sc. I SEM NAME- DR. RAKESH TIWARI TITLE - TOPOLOGY PAPER-III **Covered Topic** Method/Mode of Month Classes Delivery Countable and uncountable sets. Infinite sets and the axiom of 12 1. Chalk and July Choice. Cardinal numbers and its arithmetic. Schroeder-Bernstein talk method theorem. Cantor's theorem and the continuum hypothesis. Zorn's lemma. Well-ordering theorem. Definition and examples of 2. Flip the class topological spaces. 3. Group Closed sets, Closure, Dense subsets, Neighborhoods, Interior, 15 Aug Exterior and boundary. Accumulation points and derived sets. Bases discussion and sub-bases. Subspaces and relative topology. Alternate methods of defining a topology in terms of terms of Kuratowski Problem Solving Closure Operator and Neighbourhood Systems. Sep Continuous functions and homeomorphism. First and Second 16 Countable Spaces. Lindelof's theorems. Separable spaces. Second countability and separability. Separation axioms - their Characterizations and basic properties. 10 Oct Urysohn's lemma. Tietze extension theorem. Compactness. Continuous functions and compact sets. Basic properties of Compactness. Compactness and finite intersection property. Nov 14 Sequentially and Countably compact sets. Local compactness and one point compactification. Stone-Vech compactification. Compactness in Metric spaces. Equivalence of compactness. Countable compactness and sequential compactness in metric space.Connected spaces. Connectedness on the real line. Components. Locally connected spaces.

Teacher

HOD

Department of Mathematics

Teaching Plan

Academic Year – 2023-24

NAME- DR. RAKESH TIWARI PAPER- IV TITL		CLASS – M.SC. III SEM E – OPERATION RESEARCH(I)		
Month	Covered Topic	Classes	Method/Mode of Delivery	
July	Operations Research and its Scope. Necessity of Operations Research in Industry. Linear Programming- graphical method of solutions, Simplex Method. Theory of the Simplex Method.	15	 Flip Chalk and talk method the class Group 	
Aug	Two phase method. Big M method of solution to an LPP. Duality in linear programming. Duality theorems, Dual Simplex method. Other Algorithms for Linear Programming-Dual Simplex Method.	17		
Sep	Parametric Linear Programming. Upper Bound Technique.Transportation roblems. Formulation of transportation problems. Solutions of Transportation problems, North-West corner method.	16	discussion Problem 	
Oct	Least cost method. Assignment Problems. It's mathematical formulation, Solution of assignment problems. Optimality test. Network Analysis-Shortest Path Problem. Minimum Spanning Tree Problem.	14	Solving	
Nov	Maximum Flow Problem. Minimum Cost Flow Problem. Network Simplex Method. Project Planning and Control with PERT-CPM.	12		

Teacher

HOD

Department of Mathematics

Teaching Plan

Academic Year – 2023-24

NAME- DR. RAKESH TIWARI C PAPER- III TITLE – GENERAL AND AI			LASS – M.SC. II SEM GEBRAIC TOPOLOGY		
Month	Covered Topic	Classes	Method/Mode of Delivery		
January	Tychonoff product topology in terms of standard sub-base and its characterizations. Projection maps. Product spaces. Connectedness and product spaces. Compactness and product spaces (Tychonoff's theorem). Countability and Product spaces.	20	4. Chalk and talk method5. Flip the		
February	Embedding and metrization. Embedding lemma and Tychonoff embedding. The Urysohn metrization theorem. LocaL finiteness. The Nagata-Smirnov metrization theorem. Paracompactness. The Smirnov metrization theorem.	17	class 6. Group discussion		
March	The fundamental group and covering spaces : Homotopy of paths. The fundamental group. Covering spaces. The fundamental group of the circle and the fundamental theorem of algebra.	20	Problem Solving		
April	Nets and filter. Topology and convergence of nets. Hausdorffness and nets. Compactness and nets. Filters and their convergence. Canonical way of converting nets to filters and vice-versa. Ultra-filters and Compactness.	15			

Teacher

Department of Mathematics

Teaching Plan

Academic Year – 2023-24

NAME- DR. RAKESH TIWARI CI PAPER- IV TITLE – OPER		LASS – M.SC. IV SEM ATION RESEARCH(II)	
Month	Covered Topic	Classes	Method/Mode of Delivery
January	Dynamic Programming-Deterministic and Probabilistic Dynamic programming. Integer Programming- Branch and Bound Technique.	19	Chalk and talk method
February	Game Theory-Two-Person, Zero-Sum Games. Games with Mixed Strategies. Graphical, Solution. Solution by Linear Programming.	20	Flip the class Group
March	Nonlinear Programming-One and Multi-Variable Unconstrained Optimization. Kuhn-Tucker \Conditions for Constrained Optimization. Quadratic Programming.	20	Problem Solving
April	Queueing system: Deterministic Queueing system, probability distribution in Queueing, classification of Queueing models, Poission Queueing system ((M/M/I): (∞/FIFO), (M/M/I): (SIRO) (M/M/I): (N/FIFO)), Inventory control : The concept of EOQ, Deterministic inventory problem with no shortages.	15	

Teacher

HOD